设随机变量X服从指数分布,其概率密度函数为:当$x>0,f(x)=\frac{1}{\theta}e^{-x/\theta},\theta>0$,当$x\leq 0,f(x)=0$
$E(X)=\int_{-\infty}^{+\infty}xf(x)dx$
$=\int_{0}^{+\infty}x.\frac{1}{\theta}e^{-x/\theta}dx$
$=-xe^{-x/\theta}\vert_{0}^{+\infty}+\int_{0}^{+\infty}e^{-x/\theta}dx$
$=\theta$
$D(X)=E(X^{2})-[E(X)]^2$
$=\int_{0}^{+\infty}x^{2}\frac{1}{\theta}e^{-x/\theta}dx-\theta^{2}$
$=2\theta^{2}-\theta^{2}$
$=\theta^{2}$